We present a fairly general framework for reducing $(\varepsilon, \delta)$ differentially private (DP) statistical estimation to its non-private counterpart. As the main application of this framework, we give a polynomial time and $(\varepsilon,\delta)$-DP algorithm for learning (unrestricted) Gaussian distributions in $\mathbb{R}^d$. The sample complexity of our approach for learning the Gaussian up to total variation distance $\alpha$ is $\widetilde{O}(d^2/\alpha^2 + d^2\sqrt{\ln(1/\delta)}/\alpha \varepsilon + d\ln(1/\delta) / \alpha \varepsilon)$ matching (up to logarithmic factors) the best known information-theoretic (non-efficient) sample complexity upper bound due to Aden-Ali, Ashtiani, and Kamath (ALT'21). In an independent work, Kamath, Mouzakis, Singhal, Steinke, and Ullman (arXiv:2111.04609) proved a similar result using a different approach and with $O(d^{5/2})$ sample complexity dependence on $d$. As another application of our framework, we provide the first polynomial time $(\varepsilon, \delta)$-DP algorithm for robust learning of (unrestricted) Gaussians with sample complexity $\widetilde{O}(d^{3.5})$. In another independent work, Kothari, Manurangsi, and Velingker (arXiv:2112.03548) also provided a polynomial time $(\varepsilon, \delta)$-DP algorithm for robust learning of Gaussians with sample complexity $\widetilde{O}(d^8)$.
翻译:我们提出了一个相当一般的框架, 用于降低$( varepsilon,\ delta) 的私人( DP) 不同程度的统计估算。 作为这个框架的主要应用, 我们给出了一个多元时间和$( varepsilon,\ delta) $- DP 的学习算法( 不受限制) $\ mathb{ { r\ 美元。 我们学习高山至总变异深度( alpha$) 的样本复杂性是 $( 全方位) $( 2/ ALpha2) + d2\ qrt= ln( 1/ delta) 。 作为这个框架的主要应用, 我们给出了一个多级( 亚丁亚利、 Ashtiani 和 Kamath( ALT) 的高级智能( ASY) 和 ASIRA 。 在一项独立的工作、 ASI、 ASI、 ASI 和 ASI (A) ASI) 和 ASU ( ASU) 和 ASU ( ASU) ASU) 的 和 ASU) 。