The development of clustering heuristics has demonstrated that Bitcoin is not completely anonymous. Currently, existing clustering heuristics only consider confirmed transactions recorded in the Bitcoin blockchain. However, unconfirmed transactions in the mempool have yet to be utilized to improve the performance of the clustering heuristics. In this paper, we bridge this gap by combining unconfirmed and confirmed transactions for clustering Bitcoin addresses effectively. First, we present a data collection system for capturing unconfirmed transactions. Two case studies are performed to show the presence of user behaviors in unconfirmed transactions not present in confirmed transactions. Next, we apply the state-of-the-art clustering heuristics to unconfirmed transactions, and the clustering results can reduce the number of entities after applying, for example, the co-spend heuristics in confirmed transactions by 2.3%. Finally, we propose three novel clustering heuristics to capture specific behavior patterns in unconfirmed transactions, which further reduce the number of entities after the application of the co-spend heuristics by 9.8%. Our results demonstrate the utility of unconfirmed transactions in address clustering and further shed light on the limitations of anonymity in cryptocurrencies. To the best of our knowledge, this paper is the first to apply the unconfirmed transactions in Bitcoin to cluster addresses.
翻译:群集图象的发展表明Bitcoin并不是完全匿名的。 目前, 现有的群集图象只考虑Bitcoin块链中记录的经确认的交易。 但是, 混合库中的未经证实的交易尚未用来改善群集图象的性能。 在本文中, 我们通过将未经证实和经证实的交易合并成Bitcoin 地址来弥补这一差距。 首先, 我们为捕获未经证实的交易提供一个数据收集系统。 进行了两个案例研究, 以显示用户在未经证实的交易中存在未经证实的交易中存在用户行为。 其次, 我们将最新的群集图象图象用于未经证实的交易中, 而集群图象结果可以减少实体的数目, 例如, 在将已证实的交易中的共点谱图象合并为2.3%。 最后, 我们提出三个新的群谱图谱, 来捕捉未经证实的交易中的具体行为模式, 从而进一步减少在应用共同印图象图象图谱的交易后的实体数目9.8%。 我们的结果表明, 未经证实的交易在未经证实的交易中对未经证实的交易的组合图案的效用, 进一步揭示了在未证实的交易中的匿名性交易的限度。</s>