Conventional Endoscopy (CE) and Wireless Capsule Endoscopy (WCE) are known tools for diagnosing gastrointestinal (GI) tract disorders. Detecting the anatomical location of GI tract can help clinicians to determine a more appropriate treatment plan, can reduce repetitive endoscopy and is important in drug-delivery. There are few research that address detecting anatomical location of WCE and CE images using classification, mainly because of difficulty in collecting data and anotating them. In this study, we present a few-shot learning method based on distance metric learning which combines transfer-learning and manifold mixup scheme for localizing endoscopy frames and can be trained on few samples. The manifold mixup process improves few-shot learning by increasing the number of training epochs while reducing overfitting, as well as providing more accurate decision boundaries. A dataset is collected from 10 different anatomical positions of human GI tract. Two models were trained using only 78 CE and 27 WCE annotated frames to predict the location of 25700 and 1825 video frames from CE and WCE, respectively. In addition, we performed subjective evaluation using nine gastroenterologists to show the necessaity of having an AI system for localization. Various ablation studies and interpretations are performed to show the importance of each step, such effect of transfer-learning approach, and impact of manifold mixup on performance. The proposed method is also compared with various methods trained on categorical cross-entropy loss and produced better results which show that proposed method has potential to be used for endoscopy image classification.


翻译:常规内窥镜(CE)和无线胶囊内窥镜(WCE)是用来诊断肠胃肠道紊乱的已知工具。检测GI草的解剖位置有助于临床医生确定更适当的治疗计划,减少重复内镜检查,对药物的运送很重要。很少有研究利用分类来探测中阴镜解剖位置和CE图像的无线胶胶囊(CE)和无线胶囊囊囊囊囊(WCEE)是已知的工具。在本研究中,我们展示了基于远程计量学习的几分解学习方法,该方法结合了肠胃肠内镜框架的转移和多重混合方法,并结合了肠内镜框架的转移和多重混合方法,可以对少数样本进行培训。 多重混杂过程通过增加培训小科的数量,同时减少过份的安装,以及提供更准确的决定界限。一个数据集来自人类气道的10个不同的解剖位置。两个模型只用78 CEE和27 WECE做了附加说明性框架,用于预测25和18个视频框架的位置,同时对CE和WCE的剖面框架进行局部影质分析,并分别对CEE和WCRE结果进行更好的分析。我们进行了了一种分析,同时进行一项展示了一种分析,然后展示了一种方法。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Cross-Modal & Metric Learning 跨模态检索专题-2
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
7+阅读 · 2018年4月24日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Cross-Modal & Metric Learning 跨模态检索专题-2
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员