We consider the problem of multiple scattering on Smith microfacets. This problem is equivalent to computing volumetric light transport in a homogeneous slab. Although the symmetry of the slab allows for significant simplification, fully analytic solutions are scarce and not general enough for most applications. Standard Monte Carlo simulation, although general, is expensive and leads to variance that must be dealt with. We present the first unbiased, truly position-free path integral for evaluating the BSDF of a homogeneous slab. We collapse the spatially-1D path integral of previous works to a position-free form using an analytical preintegration of collision distances. Evaluation of the resulting path integral, which now contains only directions, reduces to simple recursive manipulation of exponential distributions. Applying Monte Carlo to solve the reduced integration problem leads to lower variance. Our new algorithm allows us to render multiple scattering on Smith microfacets with less variance than prior work, and, in the case of conductors, to do so without any bias. Additionally, our algorithm can also be used to accelerate the rendering of BSDFs containing volumetrically scattering layers, at reduced variance compared to standard Monte Carlo integration.
翻译:我们考虑了在史密斯显微脸板上多散的问题。 这个问题相当于在一个平质的平板上计算体积轻飘移, 虽然平板的对称使得可以大大简化, 完全分析的解决方案很少, 但对于大多数应用来说并不十分普遍。 标准蒙特卡洛模拟虽然很一般, 费用昂贵, 并导致必须处理的差异。 我们展示了第一个不偏颇的、 真正没有位置的路径, 用于评价一个同质的平板的 BSDF 。 我们利用碰撞距离的分析前集, 将先前作品的空间一D 路径的构件破碎成一个无位置的形式。 对由此形成的路径( 现在只包含方向) 的评估, 减少指数分布的简单循环操作。 应用蒙特卡洛解决减少的融合问题可以降低差异。 我们的新算法让我们在史密斯 微脸上多散开, 与先前的工作相比, 并且, 在导演器中, 这样做时不会有任何偏差。 此外, 我们的算法还可以用来加速含有体散落层的 BSDF 。