Massive MIMO is a leading technology to connect very large numbers of energy constrained nodes, as it offers both extensive spatial multiplexing and large array gain. A challenge resides in partitioning the many nodes into groups that can communicate simultaneously such that the mutual interference is minimized. We here propose node partitioning strategies that do not require full channel state information, but rather are based on nodes' respective directional channel properties. In our considered scenarios, these typically have a time constant that is far larger than the coherence time of the channel. We developed both an optimal and an approximation algorithm to partition users based on directional channel properties, and evaluated them numerically. Our results show that both algorithms, despite using only these directional channel properties, achieve similar performance in terms of the minimum signal-to-interference-plus-noise ratio for any user, compared with a reference method using full channel knowledge. In particular, we demonstrate that grouping nodes with related directional properties is to be avoided. We hence realise a simple partitioning method requiring minimal information to be collected from the nodes, and where this information typically remains stable over a long term, thus promoting their autonomy and energy efficiency.
翻译:大型 MIMO 是连接大量能源限制节点的领先技术, 因为它既提供了广泛的空间多路传输, 也提供了巨大的阵列增益。 挑战在于将许多节点分割成可以同时交流的组合, 这样可以最大限度地减少相互干扰。 我们在此提出不要求完整频道状态信息的节点分割策略, 而不是基于节点各自的定向频道属性。 在我们考虑的假设中, 这些假设通常有一个时间常数, 远远大于频道的一致性时间。 我们开发了一种最佳和近似算法, 给基于定向频道属性的分区用户, 并用数字来评估它们。 我们的结果表明, 这两种算法尽管只使用这些定向频道属性, 却在任何用户的最低信号- 干预+ 噪音比率方面都取得了相似的绩效, 与使用完全频道知识的参考方法相比。 我们特别证明, 避免将相关定向特性的节点组合为组合。 我们因此实现了一种简单的分解法, 需要从节点收集最低限度的信息, 并且这些信息通常长期保持稳定, 从而增进其自主性和能源效率。