The {\em discrepancy} of a matrix $M \in \mathbb{R}^{d \times n}$ is given by $\mathrm{DISC}(M) := \min_{\boldsymbol{x} \in \{-1,1\}^n} \|M\boldsymbol{x}\|_\infty$. An outstanding conjecture, attributed to Koml\'os, stipulates that $\mathrm{DISC}(M) = O(1)$, whenever $M$ is a Koml\'os matrix, that is, whenever every column of $M$ lies within the unit sphere. Our main result asserts that $\mathrm{DISC}(M + R/\sqrt{d}) = O(d^{-1/2})$ holds asymptotically almost surely, whenever $M \in \mathbb{R}^{d \times n}$ is Koml\'os, $R \in \mathbb{R}^{d \times n}$ is a Rademacher random matrix, $d = \omega(1)$, and $n = \tilde \omega(d^{5/4})$. We conjecture that $n = \omega(d \log d)$ suffices for the same assertion to hold. The factor $d^{-1/2}$ normalising $R$ is essentially best possible.
翻译:暂无翻译