Uniform sampling from the set $\mathcal{G}(\mathbf{d})$ of graphs with a given degree-sequence $\mathbf{d} = (d_1, \dots, d_n) \in \mathbb N^n$ is a classical problem in the study of random graphs. We consider an analogue for temporal graphs in which the edges are labeled with integer timestamps. The input to this generation problem is a tuple $\mathbf{D} = (\mathbf{d}, T) \in \mathbb N^n \times \mathbb N_{>0}$ and the task is to output a uniform random sample from the set $\mathcal{G}(\mathbf{D})$ of temporal graphs with degree-sequence $\mathbf{d}$ and timestamps in the interval $[1, T]$. By allowing repeated edges with distinct timestamps, $\mathcal{G}(\mathbf{D})$ can be non-empty even if $\mathcal{G}(\mathbf{d})$ is, and as a consequence, existing algorithms are difficult to apply. We describe an algorithm for this generation problem which runs in expected time $O(M)$ if $\Delta^{2+\epsilon} = O(M)$ for some constant $\epsilon > 0$ and $T - \Delta = \Omega(T)$ where $M = \sum_i d_i$ and $\Delta = \max_i d_i$. Our algorithm applies the switching method of McKay and Wormald $[1]$ to temporal graphs: we first generate a random temporal multigraph and then remove self-loops and duplicated edges with switching operations which rewire the edges in a degree-preserving manner.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月23日
Arxiv
0+阅读 · 2023年11月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员