We consider the problem of inferring an unknown number of clusters in replicated multinomial data. Under a model based clustering point of view, this task can be treated by estimating finite mixtures of multinomial distributions with or without covariates. Both Maximum Likelihood (ML) as well as Bayesian estimation are taken into account. Under a Maximum Likelihood approach, we provide an Expectation--Maximization (EM) algorithm which exploits a careful initialization procedure combined with a ridge--stabilized implementation of the Newton--Raphson method in the M--step. Under a Bayesian setup, a stochastic gradient Markov chain Monte Carlo (MCMC) algorithm embedded within a prior parallel tempering scheme is devised. The number of clusters is selected according to the Integrated Completed Likelihood criterion in the ML approach and estimating the number of non-empty components in overfitting mixture models in the Bayesian case. Our method is illustrated in simulated data and applied to two real datasets. An R package is available at https://github.com/mqbssppe/multinomialLogitMix.
翻译:我们考虑了在复制的多层数据中推断出数量未知的组群的问题。 在基于模型的组群观点下,这项任务可以通过估计多层分布的多层分布的有限混合物来处理。考虑到最大隐性(ML)和巴伊西亚的估计。在最大隐性方法下,我们提供了一种期望-最大隐性(EM)算法,利用谨慎的初始化程序,结合在M级中以山脊稳定的方式实施牛顿-拉夫森方法。在巴伊西亚的设置下,设计了一个嵌入先前平行的调和办法的Stochacistic梯度的Markov链Monte Carlo(MC)算法。根据ML方法中综合已完成的隐性标准选择了组群数量,并估计了Bayesian案件中过度配制混合模型中非隐性成分的数量。我们的方法在模拟数据中加以说明,并应用于两个真实的数据集。一个R包可以在 https://github.com/mqpmspymolmus/mymonnoix上查阅。