A Taylor variety consists of all fixed order Taylor polynomials of rational functions, where the number of variables and degrees of numerators and denominators are fixed. In one variable, Taylor varieties are given by rank constraints on Hankel matrices. Inversion of the natural parametrization is known as Pad\'e approximation. We study the dimension and defining ideals of Taylor varieties. Taylor hypersurfaces are interesting for projective geometry, since their Hessians tend to vanish. In three and more variables, there exist defective Taylor varieties whose dimension is smaller than the number of parameters. We explain this with Fr\"oberg's Conjecture in commutative algebra.
翻译:Taylor 多项式的集合被称为 Taylor 变形,其中包括有理函数的固定阶数 Taylor 多项式,其变量数和分子和分母的次数定为固定。在一维情况下,Taylor 变形按 Hankel 矩阵上的秩约束给出。这一自然参数化的反演被称为 Pad\'e 近似。我们研究了 Taylor 变形的维数和定义理想。Taylor 超曲面对于射影几何很有意思,因为它们的海森矩阵趋于零。在三个以上的变量中,存在维数小于参数数的缺陷 Taylor 变形。我们用交换代数中的 Fr\"oberg 猜想来解释这个问题。