Linearization is a widely used method for solving polynomial eigenvalue problems (PEPs) and rational eigenvalue problem (REPs) in which the PEP/REP is transformed to a generalized eigenproblem and then solve this generalized eigenproblem with algorithms available in the literature. Fiedler-like pencils (Fiedler pencils (FPs), generalized Fiedler pencils (GFPs), Fiedler pencils with repetition (FPRs) and generalized Fiedler pencils with repetition (GFPRs)) are well known classes of strong linearizations. GFPs are an intriguing family of linearizations, and GF pencils are the fundamental building blocks of FPRs and GFPRs. As a result, FPRs and GFPRs have distinctive features and they provide structure-preserving linearizations for structured matrix polynomials. But GFPRs do not use the full potential of GF pencils. Indeed, not all the GFPs are FPRs or GFPRs, and vice versa. The main aim of this paper is two-fold. First, to build a unified framework for all the Fiedler-like pencils FPs, GFPs, FPRs and GFPRs. To that end, we construct a new family of strong linearizations (named as EGFPs) of a matrix polynomial $P(\lam)$ that subsumes all the Fiedler-like linearizations. A salient feature of the EGFPs family is that it allows the construction of structured preserving banded linearizations with low bandwidth for structured (symmetric, Hermitian, palindromic) matrix polynomial. Low bandwidth structured linearizations may be useful for numerical computations. Second, to utilize EGFPs directly to form a family of Rosenbrock strong linearizations of an $n \times n$ rational matrix $G(\lam)$ associated with a realization. We describe the formulas for the construction of low bandwidth linearizations for $P(\lam)$ and $G(\lam)$. We show that the eigenvectors, minimal bases/indices of $P(\lam)$ and $G(\lam)$ can be easily recovered from those of the linearizations of $P(\lam)$ and $G(\lam)$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月4日
Arxiv
0+阅读 · 2023年7月3日
Arxiv
0+阅读 · 2023年7月1日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员