Series expansions of isotropic Gaussian random fields on $\mathbb{S}^2$ with independent Gaussian coefficients and localized basis functions are constructed. Such representations with multilevel localised structure provide an alternative to the standard Karhunen-Lo\`eve expansions of isotropic random fields in terms of spherical harmonics. The basis functions are obtained by applying the square root of the covariance operator to spherical needlets. Localization of the resulting covariance-dependent multilevel basis is shown under decay conditions on the angular power spectrum of the random field. In addition, numerical illustrations are given and an application to random elliptic PDEs on the sphere is analyzed.
翻译:以 $\ mathbb{S ⁇ 2$ 建立具有独立高斯系数和本地基功能的异位高斯随机字段系列扩展。多级本地化结构的这种表示形式提供了一种替代标准球体调和的异位随机字段Karhunen-Lo ⁇ eve扩展的替代方法。基础功能是通过将共变操作器的平方根应用到球体需要小球获得的。在随机字段的角功率谱的衰变条件下显示由此产生的共变多级基点的本地化。此外,还提供了数字插图,并分析了该球区随机椭圆形 PDE 的应用情况。