We consider linear structural equation models with latent variables and develop a criterion to certify whether the direct causal effects between the observable variables are identifiable based on the observed covariance matrix. Linear structural equation models assume that both observed and latent variables solve a linear equation system featuring stochastic noise terms. Each model corresponds to a directed graph whose edges represent the direct effects that appear as coefficients in the equation system. Prior research has developed a variety of methods to decide identifiability of direct effects in a latent projection framework, in which the confounding effects of the latent variables are represented by correlation among noise terms. This approach is effective when the confounding is sparse and effects only small subsets of the observed variables. In contrast, the new latent-factor half-trek criterion (LF-HTC) we develop in this paper operates on the original unprojected latent variable model and is able to certify identifiability in settings, where some latent variables may also have dense effects on many or even all of the observables. Our LF-HTC is an effective sufficient criterion for rational identifiability, under which the direct effects can be uniquely recovered as rational functions of the joint covariance matrix of the observed random variables. When restricting the search steps in LF-HTC to consider subsets of latent variables of bounded size, the criterion can be verified in time that is polynomial in the size of the graph.


翻译:我们考虑具有潜伏变量的线性结构方程模型,并制定标准,以证明可观测变量之间的直接因果关系是否可基于观察到的共变矩阵加以识别。线性结构方程模型假定,观测和潜伏变量均能解决以随机噪声条件为特点的线性方程系统。每种模型都对应一个定向图,其边缘代表着在方程系统中作为系数出现的直接效应。先前的研究已经开发了各种方法,用以确定在潜在预测框架中直接效应的可识别性,其中潜伏变量的共振效应通过噪音条件之间的关联来体现。当混和效应分散且只有所观测变量的一小部分时,这种方法是有效的。相比之下,我们在本文件中开发的新的潜伏-偏差半差标准(LF-HTC)与一个定向图相对应,其边缘边缘值代表原始未预测的潜在变量模型的可识别性。一些潜伏变量也可能对许多甚至所有可观测值产生密集影响。我们的LF-HTC是合理可识别性的有效标准,根据这一标准,直接效应在所观测的变量中可以单独地恢复为可测深层次变量的标准。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月4日
Arxiv
0+阅读 · 2022年10月2日
Arxiv
0+阅读 · 2022年10月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员