In this paper, we present a task space-based local motion planner that incorporates collision avoidance and constraints on end-effector motion during the execution of a task. Our key technical contribution is the development of a novel kinematic state evolution model of the robot where the collision avoidance is encoded as a complementarity constraint. We show that the kinematic state evolution with collision avoidance can be represented as a Linear Complementarity Problem (LCP). Using the LCP model along with Screw Linear Interpolation (ScLERP) in SE(3), we show that it may be possible to compute a path between two given task space poses by directly moving from the start to the goal pose, even if there are potential collisions with obstacles. The scalability of the planner is demonstrated with experiments using a physical robot. We present simulation and experimental results with both collision avoidance and task constraints to show the efficacy of our approach.
翻译:在本文中,我们提出了一个基于空间的当地运动规划任务,其中包括避免碰撞和在执行任务期间对终端效应运动的限制。我们的主要技术贡献是开发一个新型的机器人运动状态演进模型,在这种模型中,避免碰撞被编码为一种互补的制约。我们表明,避免碰撞的动态状态演进可以作为线性互补问题(LCP)来代表。我们利用LCP模型和SE(3)中的螺旋线性内插(ScLERP),我们表明,有可能从一开始直接移动到目标时,直接形成两种特定任务空间之间的一条路径,即使有可能与障碍发生碰撞。用物理机器人进行的实验可以证明规划器的伸缩性。我们提出模拟和实验结果,既可以避免碰撞,也可以通过任务限制来显示我们的方法的有效性。