Robotic assembly planning has the potential to profoundly change how buildings can be designed and created. It enables architects to explicitly account for the assembly process already during the design phase, and enables efficient building methods that profit from the robots' different capabilities. Previous work has addressed planning of robot assembly sequences and identifying the feasibility of architectural designs. This paper extends previous work by enabling assembly planning with large, heterogeneous teams of robots. We present a scalable planning system which enables parallelization of complex task and motion planning problems by iteratively solving smaller sub-problems. Combining optimization methods to solve for manipulation constraints with a sampling-based bi-directional space-time path planner enables us to plan cooperative multi-robot manipulation with unknown arrival-times. Thus, our solver allows for completing sub-problems and tasks with differing timescales and synchronizes them effectively. We demonstrate the approach on multiple case-studies and on two long-horizon building assembly scenarios to show the robustness and scalability of our algorithm.
翻译:机器人组装规划有可能深刻改变建筑设计和创建的方式,使建筑设计师能够明确说明设计阶段已经存在的组装过程,并能够利用机器人的不同能力,采用高效的建筑方法。以前的工作涉及机器人组装序列规划和确定建筑设计的可行性。本文件扩展了先前的工作,与大型、多式机器人组一起进行组装规划。我们提出了一个可扩缩的规划系统,通过迭接解决较小的小问题,使复杂的任务和动作规划问题能够平行化。将优化方法与基于抽样的双向空间时间路径规划师相结合,以解决操纵限制,使我们能够计划以未知的到达时间进行多机器人合作操作。因此,我们的解算器能够完成分问题和任务,不同的时间尺度,并有效地同步这些任务。我们演示了多种案例研究和两个长方位组装假设的方法,以显示我们的算法的稳健性和可变性。