This paper presents a closed-form approach to constrain a flow within a given volume and around objects. The flow is guaranteed to converge and to stop at a single fixed point. We show that the obstacle avoidance problem can be inverted to enforce that the flow remains enclosed within a volume defined by a polygonal surface. We formally guarantee that such a flow will never contact the boundaries of the enclosing volume and obstacles, and will asymptotically converge towards an attractor. We further create smooth motion fields around obstacles with edges (e.g. tables). Both obstacles and enclosures may be time-varying, i.e. moving, expanding and shrinking. The technique enables a robot to navigate within an enclosed corridor while avoiding static and moving obstacles. It was applied on an autonomous robot (QOLO) in a static complex indoor environment, and also tested in simulations with dense crowds. The final proof of concept was performed in an outdoor environment in Lausanne. The QOLO-robot successfully traversed a marketplace in the center of town in presence of a diverse crowd with a non-uniform motion pattern.
翻译:本文为限制特定体积和物体周围的流量提供了一种封闭式的办法。 保证流动会汇合, 并在一个固定点停止。 我们表明, 避免障碍的问题可能会被倒过来, 以强制保证流量仍然被封闭在一个多边形表面界定的体积内。 我们正式保证, 这种流动不会接触附着体积和障碍的界限, 并且会无休止地向吸引者集中。 我们进一步在有边缘( 如表格)的障碍周围创造平稳的运动场。 障碍物和封闭物可能会有时间变化, 即移动、 扩张和缩小。 技术可以使机器人在封闭的走廊内行走, 同时避免静态和移动障碍。 在一个静态复杂的室内环境中, 自动机器人( QOLO) 被应用到一个静态的机器人( QOLO) 上, 并与密集的人群进行模拟试验。 概念的最后证据是在洛桑的室外环境中进行的。 QOLO- robot 成功地在城镇中心的一个市场中进行摸索式的市场。