Trajectory planning is a key piece in the algorithmic architecture of a robot. Trajectory planners typically use iterative optimization schemes for generating smooth trajectories that avoid collisions and are optimal for tracking given the robot's physical specifications. Starting from an initial estimate, the planners iteratively refine the solution so as to satisfy the desired constraints. In this paper, we show that such iterative optimization based planners can be vulnerable to adversarial attacks that force the planner either to fail completely, or significantly increase the time required to find a solution. The key insight here is that an adversary in the environment can directly affect the optimization cost function of a planner. We demonstrate how the adversary can adjust its own state configurations to result in poorly conditioned eigenstructure of the objective leading to failures. We apply our method against two state of the art trajectory planners and demonstrate that an adversary can consistently exploit certain weaknesses of an iterative optimization scheme.
翻译:轨迹规划是机器人算法结构中的一个关键部分。 轨迹规划者通常使用迭代优化方案生成平滑的轨迹,避免碰撞,并且根据机器人的物理规格进行最佳跟踪。 从初步估计开始, 规划者反复完善解决方案, 以满足预期的限制条件。 在本文中, 我们显示这种基于迭代优化的规划者很容易受到对抗性攻击, 从而迫使规划者完全失败, 或大大增加寻找解决方案所需的时间。 这里的关键洞察力是, 环境中的对手可以直接影响规划者的最佳成本功能。 我们演示对手如何调整自己的状态配置, 导致目标失败。 我们运用我们的方法来对付两种状态的艺术轨迹规划者, 并证明对手可以持续利用迭代优化方案的某些弱点 。