Let $T_n$ be a random recursive tree with $n$ nodes. List vertices of $T_n$ in decreasing order of degree as $v^1,\ldots,v^n$, and write $d^i$ and $h^i$ for the degree of $v^i$ and the distance of $v^i$ from the root, respectively. We prove that, as $n \to \infty$ along suitable subsequences, \[ \bigg(d^i - \lfloor \log_2 n \rfloor, \frac{h^i - \mu\ln n}{\sqrt{\sigma^2\ln n}}\bigg) \to ((P_i,i \ge 1),(N_i,i \ge 1))\, , \] where $\mu=1-(\log_2 e)/2$, $\sigma^2=1-(\log_2 e)/4$, $(P_i,i \ge 1)$ is a Poisson point process on $\mathbb{Z}$ and $(N_i,i \ge 1)$ is a vector of independent standard Gaussians. We additionally establish joint normality for the depths of uniformly random vertices in $T_n$, which extends results for the case of a single random vertex. The joint limit holds even if the random vertices are conditioned to have large degree, provided the normalizing constants are adjusted accordingly; however, both the mean and variance of the conditinal depths remain of orden $\ln n$. Our results are based on a simple relationship between random recursive trees and Kingman's $n$-coalescent; a utility that seems to have been largely overlooked.
翻译:$T_n美元 是一个随机的循环树, 上面有 $n 节点 。 列出 $T_ n美元, 递减为$v% 1,\ ldots, v ⁇ n美元, 并写$d ⁇ i美元和$v ⁇ i美元 与根的距离。 我们证明, 美元=1 - (\log_ 2 e), $\ bigg (d__i -\ l lod_ log_ 2 n\ r floor) 。 列出 Oral_ t_ nn, 递减为$ xm\ n\ n\\\ 美元, 并写为$( P_, i, i, i) 和 $( ral_ liver) 的 Oral_ councial 。 如果 Oral_ ral_ ral_ ral_ i, ral_ ral_ a lex, ral_ rbs ral deal ral ral ral ral a a, ral_ pal_ ral_ ral deal_ $1, ral_ ral_ ral_ rmals, ral_ rals a a, $, ral_ ral_ ral_ i, i, ral_ i, ral_ ral_ i, ral_ ral_ ral_ i, i, i, ral_ i, i, i, i, i, i, a a a a a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a, a