We show that corner polyhedra and 3-connected Schnyder labelings join the growing list of planar structures that can be set in exact correspondence with (weighted) models of quadrant walks via a bijection due to Kenyon, Miller, Sheffield and Wilson. Our approach leads to a first polynomial time algorithm to count these structures, and to the determination of their exact asymptotic growth constants: the number $p_n$ of corner polyhedra and $s_n$ of 3-connected Schnyder woods of size $n$ respectively satisfy $(p_n)^{1/n}\to 9/2$ and $(s_n)^{1/n}\to 16/3$ as $n$ goes to infinity. While the growth rates are rational, like in the case of previously known instances of such correspondences, the exponent of the asymptotic polynomial correction to the exponential growth does not appear to follow from the now standard Denisov-Wachtel approach, due to a bimodal behavior of the step set of the underlying tandem walk. However a heuristic argument suggests that these exponents are $-1-\pi/\arccos(9/16)\approx -4.23$ for $p_n$ and $-1-\pi/\arccos(22/27)\approx -6.08$ for $s_n$, which would imply that the associated series are not D-finite.
翻译:我们展示了角多环形和3个相连的Schnyder标签, 加入越来越多的平面结构清单, 这些结构可以与Kenyon、 Miller、 Sheffield 和 Wilson 的( 加权) 象形行走模型精确对应。 我们的方法可以导致第一个多球时间算法来计算这些结构, 以及确定它们准确的无症状增长常数: 角多环行和3个连接的Schnyder森林的美元数以美元计数, 以美元计数( p_n) ⁇ 1/n ⁇ % to 9/2 美元和 $ (s_n) 到 16/3美元, 以美元计数。 虽然增长率是合理的, 就像以前已知的这些通信案例一样, 但对指数性多比修正的指数增长似乎没有遵循现在标准的 Denis-Wachtel 方法, 其原因是相联行行行的平级( $_ $_ 美元) 和 $_xxxx 的双向行为。 然而, 这些直言论认为这些推论是用于 $- 美元/ exproprox16 。