In this paper, we introduce Planet-CR, a benchmark dataset for high-resolution cloud removal with multi-modal and multi-resolution data fusion. Planet-CR is the first public dataset for cloud removal to feature globally sampled high resolution optical observations, in combination with paired radar measurements as well as pixel-level land cover annotations. It provides solid basis for exhaustive evaluation in terms of generating visually pleasing textures and semantically meaningful structures. With this dataset, we consider the problem of cloud removal in high resolution optical remote sensing imagery by integrating multi-modal and multi-resolution information. Existing multi-modal data fusion based methods, which assume the image pairs are aligned pixel-to-pixel, are hence not appropriate for this problem. To this end, we design a new baseline named Align-CR to perform the low-resolution SAR image guided high-resolution optical image cloud removal. It implicitly aligns the multi-modal and multi-resolution data during the reconstruction process to promote the cloud removal performance. The experimental results demonstrate that the proposed Align-CR method gives the best performance in both visual recovery quality and semantic recovery quality. The project is available at https://github.com/zhu-xlab/Planet-CR, and hope this will inspire future research.
翻译:在本文中,我们介绍Planet-CR,这是一个高分辨率云清除与多模式和多分辨率数据融合的基准数据集。Planet-CR是第一个用于云清除的公开数据集,以显示全球采样的高分辨率光学观测,结合配对雷达测量和像素水平土地覆盖图解,并结合配对式雷达测量和像素水平土地覆盖图解,显示全球高分辨率云的光学云清除,为详尽评估提供了坚实的基础,生成视觉上令人愉快的纹理和具有语义意义结构。有了这个数据集,我们通过整合多模式和多分辨率信息,考虑高分辨率光学遥感图像中的云清除问题。现有的多模式数据融合方法,假定图像配对是匹配的像素-像素-像素的,因此不适合这一问题。为此,我们设计了一个名为Aliign-CRR的新基线,用于进行低分辨率合成合成合成的光学图像清除。它隐含了重建过程中的多模式和多分辨率数据和多分辨率数据,以促进云清除性工作。实验结果显示,拟议的Aliign-CR方法在视觉上提供了最佳的恢复质量和SMAx/SMAx/SMAL质量项目。