In pediatric cardiology, the accurate and immediate assessment of cardiac function through echocardiography is crucial since it can determine whether urgent intervention is required in many emergencies. However, echocardiography is characterized by ambiguity and heavy background noise interference, causing more difficulty in accurate segmentation. Present methods lack efficiency and are prone to mistakenly segmenting some background noise areas, such as the left ventricular area, due to noise disturbance. To address these issues, we introduce P-Mamba, which integrates the Mixture of Experts (MoE) concept for efficient pediatric echocardiographic left ventricular segmentation. Specifically, we utilize the recently proposed ViM layers from the vision mamba to enhance our model's computational and memory efficiency while modeling global dependencies.In the DWT-based Perona-Malik Diffusion (PMD) Block, we devise a PMD Block for noise suppression while preserving the left ventricle's local shape cues. Consequently, our proposed P-Mamba innovatively combines the PMD's noise suppression and local feature extraction capabilities with Mamba's efficient design for global dependency modeling. We conducted segmentation experiments on two pediatric ultrasound datasets and a general ultrasound dataset, namely Echonet-dynamic, and achieved state-of-the-art (SOTA) results. Leveraging the strengths of the P-Mamba block, our model demonstrates superior accuracy and efficiency compared to established models, including vision transformers with quadratic and linear computational complexity.
翻译:暂无翻译