Integrated Circuits (ICs) are the target of diverse attacks during their lifetime. Fabrication-time attacks, such as the insertion of Hardware Trojans, can give an adversary access to privileged data and/or the means to corrupt the IC's internal computation. Post-fabrication attacks, where the end-user takes a malicious role, also attempt to obtain privileged information through means such as fault injection and probing. Taking these threats into account and at the same time, this paper proposes a methodology for Security-Aware Layout Synthesis (SALSy), such that ICs can be designed with security in mind in the same manner as power-performance-area (PPA) metrics are considered today, a concept known as security closure. Furthermore, the trade-offs between PPA and security are considered and a chip is fabricated in a 65nm CMOS commercial technology for validation purposes - a feature not seen in previous research on security closure. Measurements on the fabricated ICs indicate that SALSy promotes a modest increase in power in order to achieve significantly improved security metrics.
翻译:暂无翻译