We study the distributed multi-user secret sharing (DMUSS) problem under the perfect privacy condition. In a DMUSS problem, multiple secret messages are deployed and the shares are offloaded to the storage nodes. Moreover, the access structure is extremely incomplete, as the decoding collection of each secret message has only one set, and by the perfect privacy condition such collection is also the colluding collection of all other secret messages. The secret message rate is defined as the size of the secret message normalized by the size of a share. We characterize the capacity region of the DMUSS problem when given an access structure, defined as the set of all achievable rate tuples. In the achievable scheme, we assume all shares are mutually independent and then design the decoding function based on the fact that the decoding collection of each secret message has only one set. Then it turns out that the perfect privacy condition is equivalent to the full rank property of some matrices consisting of different indeterminates and zeros. Such a solution does exist if the field size is bigger than the number of secret messages. Finally with a matching converse saying that the size of the secret is upper bounded by the sum of sizes of non-colluding shares, we characterize the capacity region of DMUSS problem under the perfect privacy condition.
翻译:在完全隐私条件下,我们研究了分散的多用户秘密共享(DMUSS)问题。在DMUSS问题中,多封秘密信息被部署,股票被卸到存储节点。此外,访问结构极不完整,因为每个秘密信息解码收集只有一套,而这种收集的绝密隐私条件是串通所有其他秘密信息的完整隐私条件。秘密信息率被定义为秘密信息大小的普通化。当给定一个接入结构时,我们描述DMUSS问题的能力区域,该结构的定义是所有可实现的速率图例。在可实现的方案中,我们假设所有股票都是相互独立的,然后根据每个秘密信息解码收集只有一套,设计解码功能。然后,完全的隐私条件相当于由不同不确定和零组成的某些矩阵的全部属性。如果字段大小大于秘密信息的数量,这种解决方案就存在。最后,我们假设所有股票都是相互独立的,然后根据每个秘密信息集的大小来设计解码功能。然后,我们将DMIS的精密度能力问题置于不完全的磁区。