With the advancement of the Internet of Things(IoT) and pervasive computing applications, it provides a better opportunity to understand the behavior of the aging population. However, in a nursing home scenario, common sensors and techniques used to track an elderly living alone are not suitable. In this paper, we design a location-based tracking system for a four-story nursing home - The Salvation Army, Peacehaven Nursing Home in Singapore. The main challenge here is to identify the group activity among the nursing home's residents and to detect if they have any deviated activity behavior. We propose a location-based deviated activity behavior detection system to detect deviated activity behavior by leveraging data fusion technique. In order to compute the features for data fusion, an adaptive method is applied for extracting the group and individual activity time and generate daily hybrid norm for each of the residents. Next, deviated activity behavior detection is executed by considering the difference between daily norm patterns and daily input data for each resident. Lastly, the deviated activity behavior among the residents are classified using a rule-based classification approach. Through the implementation, there are 44.4% of the residents do not have deviated activity behavior , while 37% residents involved in one deviated activity behavior and 18.6% residents have two or more deviated activity behaviors.
翻译:随着Things(IoT)互联网的进步和普遍的计算应用,它为了解老龄人口的行为提供了一个更好的机会。然而,在养老院的假设中,用于跟踪独居老年人的通用传感器和技术是不合适的。在本文中,我们为四层养老院设计了一个基于地点的跟踪系统——新加坡救世军、和平港护理之家。这里的主要挑战是确定护理院居民的团体活动,并发现他们是否有任何偏离活动行为。我们建议了一个基于地点的偏差活动行为探测系统,以利用数据融合技术探测偏差的活动行为。为了计算数据融合的特征,我们采用了一种适应性方法来提取群体和个人活动的时间,并为每个居民创造日常混合规范。接下来,通过考虑每个居民的日常规范模式和每日输入数据之间的差异来进行偏差行为检测。最后,居民的偏差活动行为通过基于规则的分类方法分类。通过实施,有44.4%的居民通过利用数据融合技术来检测偏差的活动行为。为了计算数据聚合特性,采用了一种适应性方法来提取群体和个人的活动时间,并为每个居民制定日常混合规范模式和每日输入数据数据。37 % 居民的行为检查。最后,对居民的偏差行为进行了分类,对居民进行了分类。通过执行,有44.4%的居民没有偏差,有两种居民行为,有两种居民的活动行为。