Human affective behavior analysis plays a vital role in human-computer interaction (HCI) systems. In this paper, we introduce our submission to the CVPR 2023 Competition on Affective Behavior Analysis in-the-wild (ABAW). We propose a single-stage trained AU detection framework. Specifically, in order to effectively extract facial local region features related to AU detection, we use a local region perception module to effectively extract features of different AUs. Meanwhile, we use a graph neural network-based relational learning module to capture the relationship between AUs. In addition, considering the role of the overall feature of the target face on AU detection, we also use the feature fusion module to fuse the feature information extracted by the backbone network and the AU feature information extracted by the relationship learning module. We also adopted some sampling methods, data augmentation techniques and post-processing strategies to further improve the performance of the model.
翻译:人类感官行为分析在人体-计算机互动系统(HCI)中发挥着至关重要的作用。在本文件中,我们向CVPR 2023竞争委员会介绍我们提交《2023反动行为分析竞赛(ABAW)》的情况。我们提议了一个经过训练的单一阶段的非盟检测框架。具体地说,为了有效提取与非盟检测有关的局部地区面部特征,我们使用一个本地地区感知模块来有效提取不同非盟的特征。同时,我们使用一个基于图表的神经网络关系学习模块来捕捉非盟之间的关系。此外,考虑到目标面部的整体特征在非盟检测中的作用,我们还使用特征聚合模块来整合骨干网络提取的特征信息以及通过关系学习模块提取的非盟特征信息。我们还采用了一些抽样方法、数据增强技术和后处理战略来进一步改进模型的性能。</s>