The long term behaviour of a quantum channel under iterations (i.e. under repeated applications of itself) yields a plethora of interesting properties. These include ergodicity, mixing, eventual scrambling, becoming strictly positive, and the vanishing of its one-shot zero error capacities. We derive relations between these seemingly different properties and find novel bounds on indices which quantify the minimum number of iterations needed for the onset of some of these properties. We obtain a lower bound on the one-shot zero-error classical capacity of $n$ iterations of an ergodic channel (for any positive integer $n$) in terms of the cardinality of its peripheral spectrum. We also find upper bounds on the minimum number of iterations needed for the one-shot capacities of any channel to stabilize. We consider two classes of quantum channels, satisfying certain symmetries, for which upper bounds on the above indices are optimal, since they reduce to the corresponding indices for a stochastic matrix (for which the bounds are known to be optimal). As an auxiliary result, we obtain a trade-off relation between the one-shot zero error classical and quantum capacities of a quantum channel.
翻译:暂无翻译