Since LaLonde's (1986) seminal paper, there has been ongoing interest in estimating treatment effects using pre- and post-intervention data. Scholars have traditionally used experimental benchmarks to evaluate the accuracy of alternative econometric methods, including Matching, Difference-in-Differences (DID), and their hybrid forms (e.g., Heckman et al., 1998b; Dehejia and Wahba, 2002; Smith and Todd, 2005). We revisit these methodologies in the evaluation of job training and educational programs using four datasets (LaLonde, 1986; Heckman et al., 1998a; Smith and Todd, 2005; Chetty et al., 2014a; Athey et al., 2020), and show that the inequality relationship, Matching $\leq$ Hybrid $\leq$ DID, appears as a consistent norm, rather than a mere coincidence. We provide a formal theoretical justification for this puzzling phenomenon under plausible conditions such as negative selection, by generalizing the classical bracketing (Angrist and Pischke, 2009, Section 5). Consequently, when treatments are expected to be non-negative, DID tends to provide optimistic estimates, while Matching offers more conservative ones.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年3月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
dynnode2vec: Scalable Dynamic Network Embedding
Arxiv
15+阅读 · 2018年12月6日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
20+阅读 · 2018年7月12日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年3月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员