Deep learning (DL) finds rich applications in the wireless domain to improve spectrum awareness. Typically, DL models are either randomly initialized following a statistical distribution or pretrained on tasks from other domains in the form of transfer learning without accounting for the unique characteristics of wireless signals. Self-supervised learning (SSL) enables the learning of useful representations from Radio Frequency (RF) signals themselves even when only limited training data samples with labels are available. We present a self-supervised RF signal representation learning method and apply it to the automatic modulation recognition (AMR) task by specifically formulating a set of transformations to capture the wireless signal characteristics. We show that the sample efficiency (the number of labeled samples needed to achieve a certain performance) of AMR can be significantly increased (almost an order of magnitude) by learning signal representations with SSL. This translates to substantial time and cost savings. Furthermore, SSL increases the model accuracy compared to the state-of-the-art DL methods and maintains high accuracy when limited training data is available.
翻译:深度学习( DL) 在无线域找到丰富的应用,以提高频谱意识。 通常, DL 模型要么在统计分布后随机初始化,要么在不考虑无线信号独特性特点的情况下,以转让学习的形式对其他领域的任务进行预先培训。 自我监督学习(SSL)使得能够从无线电频率(RF)信号中学习有用的表达方式,即使只有有限的带有标签的培训数据样本,也可以这样做。 我们提出了一个自我监督的 RF 信号代表学习方法,并将它应用到自动调制识别任务中,具体为获取无线信号特征制定一套变换方法。 我们表明,通过学习SLS的信号表达方式,AMR的样本效率(达到某种性能所需的标签样本数量)可以大大提高(几乎是数量级 ) 。 这可以转化为大量的时间和成本节约。 此外, SLL 提高了模型的精确度,与最先进的DL 方法相比,并在可获得有限的培训数据时保持很高的准确性。