With a growing interest in data-driven control techniques, Model Predictive Control (MPC) provides an opportunity to exploit the surplus of data reliably, particularly while taking safety and stability into account. In many real-world and industrial applications, it is typical to have an existing control strategy, for instance, execution from a human operator. The objective of this work is to improve upon this unknown, safe but suboptimal policy by learning a new controller that retains safety and stability. Learning how to be safe is achieved directly from data and from a knowledge of the system constraints. The proposed algorithm alternatively learns the terminal cost and updates the MPC parameters according to a stability metric. The terminal cost is constructed as a Lyapunov function neural network with the aim of recovering or extending the stable region of the initial demonstrator using a short prediction horizon. Theorems that characterize the stability and performance of the learned MPC in the bearing of model uncertainties and sub-optimality due to function approximation are presented. The efficacy of the proposed algorithm is demonstrated on non-linear continuous control tasks with soft constraints. The proposed approach can improve upon the initial demonstrator also in practice and achieve better stability than popular reinforcement learning baselines.


翻译:由于对数据驱动的控制技术越来越感兴趣,模型预测控制(MPC)为可靠地利用数据剩余数据提供了机会,特别是在考虑到安全和稳定的情况下。在许多现实世界和工业应用中,典型的做法是有一套现有的控制战略,例如由人操作员执行。这项工作的目标是通过学习新的控制器来改进这一未知、安全但又不最优化的政策,以保持安全和稳定。如何安全是直接从数据和系统限制知识中得来的。提议的算法或者学习终端成本,并根据稳定度指标更新MPC参数。终端成本是作为Lyapunov功能神经网络建造的,目的是利用一个短的预测视野恢复或扩大最初的示范器的稳定区域。介绍了所学的MPC在承受模型不确定性和功能近似情况下的稳定性和性能特征。提议的算法的效力表现在非线性连续控制任务上,并且有软性制约。拟议的方法可以改进最初的模拟器功能神经网络,在实践中恢复或扩大最初的稳定性,比大众学习的稳定性还要好。

0
下载
关闭预览

相关内容

【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员