This work studies the design of neural networks that can process the weights or gradients of other neural networks, which we refer to as neural functional networks (NFNs). Despite a wide range of potential applications, including learned optimization, processing implicit neural representations, network editing, and policy evaluation, there are few unifying principles for designing effective architectures that process the weights of other networks. We approach the design of neural functionals through the lens of symmetry, in particular by focusing on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order. We introduce a framework for building permutation equivariant neural functionals, whose architectures encode these symmetries as an inductive bias. The key building blocks of this framework are NF-Layers (neural functional layers) that we constrain to be permutation equivariant through an appropriate parameter sharing scheme. In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks that require processing the weights of MLPs and CNNs, such as predicting classifier generalization, producing "winning ticket" sparsity masks for initializations, and editing the weights of implicit neural representations (INRs). In addition, we provide code for our models and experiments at https://github.com/AllanYangZhou/nfn.


翻译:这项工作研究能够处理其他神经网络的权重或梯度的神经网络的设计,我们称之为神经功能网络。尽管存在广泛的潜在应用,包括学习优化、处理隐含神经表示、网络编辑和政策评价,但设计有效结构以处理其他网络权重的一致原则却很少。我们通过对称透镜来看待神经功能的设计,特别是通过适当的参数共享计划,侧重于深层饲料网络重量中产生的变异性对称,因为隐藏的层神经没有内在的顺序。我们引入了一个建设变异等等神经功能的框架,其结构将这些对等性作为一种感性偏差进行编码。这个框架的关键构件是NF-Layers(神经功能层),我们通过适当的参数共享计划来限制变异性。在我们的实验中,我们发现变异性神经功能对多种任务组合是有效的,这一系列任务都要求对内置的变异性模型进行精度分析,对内置的精度进行精度预测,对内存的内嵌性分析,例如,对内存的内置的内置分析,对内置的模型进行精度分析,对内置的精度分析,例如,对内存的内存的内存和内置的内置的内置的模拟,对等。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
12+阅读 · 2022年11月21日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
12+阅读 · 2018年9月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员