Achieving multiple genres and long-term choreography sequences from given music is a challenging task, due to the lack of a multi-genre dataset. To tackle this problem,we propose a Multi Art Genre Intelligent Choreography Dataset (MagicDance). The data of MagicDance is captured from professional dancers assisted by motion capture technicians. It has a total of 8 hours 3D motioncapture human dances with paired music, and 16 different dance genres. To the best of our knowledge, MagicDance is the 3D dance dataset with the most genres. In addition, we find that the existing two types of methods (generation-based method and synthesis-based method) can only satisfy one of the diversity and duration, but they can complement to some extent. Based on this observation, we also propose a generation-synthesis choreography network (MagicNet), which cascades a Diffusion-based 3D Diverse Dance fragments Generation Network (3DGNet) and a Genre&Coherent aware Retrieval Module (GCRM). The former can generate various dance fragments from only one music clip. The latter is utilized to select the best dance fragment generated by 3DGNet and switch them into a complete dance according to the genre and coherent matching score. Quantitative and qualitative experiments demonstrate the quality of MagicDance, and the state-of-the-art performance of MagicNet.
翻译:由于缺乏多类型数据集, 实现来自特定音乐的多种类型和长期舞蹈序列是一项具有挑战性的任务。 为了解决这个问题, 我们提出多艺术智能舞蹈数据集( MagicDance ) 。 魔术舞蹈的数据来自专业舞者, 由运动捕捉技师协助。 它共有8小时 3D 运动捕捉人类舞蹈, 配对音乐, 16种不同的舞蹈。 根据我们的知识, MagiDance 是 3D 舞蹈数据集 3D 舞蹈数据集, 配有多类型数据集 。 此外, 我们发现, 现有的两种方法( 以新一代为基础的方法和基于合成的方法) 只能满足多样性和持续时间之一, 但它们可以在一定程度上加以补充 。 基于这一观察, 我们还建议建立一个新一代合成舞蹈舞蹈网络网络( MagicNet ), 将基于3DVE 的舞蹈碎片升级为3DGNet 制作网络( 3DGNet Net ), 以及一个Genre和Cohelening数据集 Qal QLA- Registralalalalalalalal 模版, 3 和DGDGDGDRM 缩缩缩片, 。 。 由前制成的舞蹈和后制成的舞蹈和制成的舞蹈和制成, 和制成的舞蹈和制成的螺旋和制成, 后制成, 和制成后制成, 制成的舞蹈和制成, 制成的舞蹈和制成, 制成的舞蹈。