In material physics, characterization techniques are foremost crucial for obtaining the materials data regarding the physical properties as well as structural, electronics, magnetic, optic, dielectric, and spectroscopic characteristics. However, for many materials, ensuring availability and safe accessibility is not always easy and fully warranted. Moreover, the use of modeling and simulation techniques need a lot of theoretical knowledge, in addition of being associated to costly computation time and a great complexity deal. Thus, analyzing materials with different techniques for multiple samples simultaneously, still be very challenging for engineers and researchers. It is worth noting that although of being very risky, X-ray diffraction is the well known and widely used characterization technique which gathers data from structural properties of crystalline 1d, 2d or 3d materials. We propose in this paper, a Smart GRU for Gated Recurrent Unit model to forcast structural characteristics or properties of thin films of tin oxide SnO$_2$(110). Indeed, thin films samples are elaborated and managed experimentally and the collected data dictionary is then used to generate an AI -- Artificial Intelligence -- GRU model for the thin films of tin oxide SnO$_2$(110) structural property characterization.
翻译:暂无翻译