Mobile applications have become indispensable companions in our daily lives. Spanning over the categories from communication and entertainment to healthcare and finance, these applications have been influential in every aspect. Despite their omnipresence, developing apps that meet user needs and expectations still remains a challenge. Traditional requirements elicitation methods like user interviews can be time-consuming and suffer from limited scope and subjectivity. This research introduces an approach leveraging the power of Large Language Models (LLMs) to analyze user reviews for automated requirements elicitation. We fine-tuned three well-established LLMs BERT, DistilBERT, and GEMMA, on a dataset of app reviews labeled for usefulness. Our evaluation revealed BERT's superior performance, achieving an accuracy of 92.40% and an F1-score of 92.39%, demonstrating its effectiveness in accurately classifying useful reviews. While GEMMA displayed a lower overall performance, it excelled in recall (93.39%), indicating its potential for capturing a comprehensive set of valuable user insights. These findings suggest that LLMs offer a promising avenue for streamlining requirements elicitation in mobile app development, leading to the creation of more user-centric and successful applications.
翻译:暂无翻译