We apply Fourier neural operators (FNOs), a state-of-the-art operator learning technique, to forecast the temporal evolution of experimentally measured velocity fields. FNOs are a recently developed machine learning method capable of approximating solution operators to systems of partial differential equations through data alone. The learned FNO solution operator can be evaluated in milliseconds, potentially enabling faster-than-real-time modeling for predictive flow control in physical systems. Here we use FNOs to predict how physical fluid flows evolve in time, training with particle image velocimetry measurements depicting cylinder wakes in the subcritical vortex shedding regime. We train separate FNOs at Reynolds numbers ranging from Re = 240 to Re = 3060 and study how increasingly turbulent flow phenomena impact prediction accuracy. We focus here on a short prediction horizon of ten non-dimensionalized time-steps, as would be relevant for problems of predictive flow control. We find that FNOs are capable of accurately predicting the evolution of experimental velocity fields throughout the range of Reynolds numbers tested (L2 norm error < 0.1) despite being provided with limited and imperfect flow observations. Given these results, we conclude that this method holds significant potential for real-time predictive flow control of physical systems.
翻译:我们应用Fourier神经操作员(Frenier 神经操作员),这是一种最先进的操作员学习技术,用来预测实验测量速度场的瞬时演进。FNO是最近开发的一种机器学习方法,能够将溶解操作员近似溶液操作员,仅通过数据即可形成局部差异方程系统。所学FNO溶解操作员可以用毫秒来评价,这有可能使物理系统预测流量控制所需的快速比实时模型模型化成为可能。我们在这里使用FNOs来预测物理流流流流如何在时间上演进,进行粒子图像天体测量的培训,以描述在次临界电流系统内显示气瓶的休醒。我们在Reynolds的数字上分别培训从Re=240到Re=3060不等的FNOs,并研究日益动荡流现象对预测准确性的影响。我们这里的焦点是10个非持续时间段的短的预测视野,这与预测流量控制问题有关。我们发现FNOs能够准确预测在所测试的Reolds数字范围(L2规范误差实际流 < 0.1)中,尽管我们掌握了这些流量的精确的预测结果,但我们仍然掌握着这些不完全的流量。