Boolean networks (BNs) are discrete dynamical systems with applications to the modeling of cellular behaviors. In this paper, we demonstrate how the software BoNesis can be employed to exhaustively identify combinations of perturbations which enforce properties on their fixed points and attractors. We consider marker properties, which specify that some components are fixed to a specific value. We study 4 variants of the marker reprogramming problem: the reprogramming of fixed points, of minimal trap spaces, and of fixed points and minimal trap spaces reachable from a given initial configuration with the most permissive update mode. The perturbations consist of fixing a set of components to a fixed value. They can destroy and create new attractors. In each case, we give an upper bound on their theoretical computational complexity, and give an implementation of the resolution using the BoNesis Python framework. Finally, we lift the reprogramming problems to ensembles of BNs, as supported by BoNesis, bringing insight on possible and universal reprogramming strategies. This paper can be executed and modified interactively.
翻译:Boolean 网络(BNs) 是离散的动态系统, 适用于细胞行为模型的模型。 在本文中, 我们演示了如何使用软件 BoNesis 来详尽地确定在固定点和吸引器上强制执行属性的扰动组合。 我们考虑标记属性, 其中具体说明某些组件固定在特定值上。 我们研究了标记重新编程问题的4个变量: 固定点的重新编程、 最小陷阱空间、 固定点和最小陷阱空间的重新编程, 以最允许的更新模式从一个特定初始配置中可以达到的。 扰动包括将一组组件固定值固定起来。 它们可以摧毁和创建新的吸引器。 在每种情况下, 我们给其理论计算复杂性设定一个上限, 并使用 BoNesis Python 框架执行决议 。 最后, 我们在BoNesisis 的支持下, 解除了对 BNs 组合的重新编程问题, 并带来了对可能和通用的重新编程策略的洞察。 该文件可以执行和互动修改 。</s>