We consider the problem of learning parametric distributions from their quantized samples in a network. Specifically, $n$ agents or sensors observe independent samples of an unknown parametric distribution; and each of them uses $k$ bits to describe its observed sample to a central processor whose goal is to estimate the unknown distribution. First, we establish a generalization of the well-known van Trees inequality to general $L_p$-norms, with $p > 1$, in terms of Generalized Fisher information. Then, we develop minimax lower bounds on the estimation error for two losses: general $L_p$-norms and the related Wasserstein loss from optimal transport.


翻译:我们考虑从网络中的量化样本中学习参数分布的问题。 具体地说, 美元代理商或传感器观察的是未知参数分布的独立样本; 每一个代理商或传感器都使用千元比特向中心处理商描述其观察到的样本, 中心处理商的目标是估计未知分布。 首先, 我们根据一般化的渔业信息,将众所周知的范树的不平等程度概括为一般的1美元/p$-norms, 以1美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/ 10美元/美元/ 10美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【南京大学冯雯博士论文】新型深度学习模型的研究
专知会员服务
67+阅读 · 2020年12月5日
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
57+阅读 · 2019年11月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月14日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年4月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员