We determine the exact value of the optimal symmetric rate point $(r, r)$ in the Dueck zero-error capacity region of the binary adder channel with complete feedback. We proved that the average zero-error capacity $r = h(1/2-\delta) \approx 0.78974$, where $h(\cdot)$ is the binary entropy function and $\delta = 1/(2\log_2(2+\sqrt3))$. Our motivation is a problem in quantitative group testing. Given a set of $n$ elements two of which are defective, the quantitative group testing problem asks for the identification of these two defectives through a series of tests. Each test gives the number of defectives contained in the tested subset, and the outcomes of previous tests are assumed known at the time of designing the current test. We establish that the minimum number of tests is asymptotic to $(\log_2 n) / r$ as $n \to \infty$.
翻译:我们用完整的反馈来确定二进制加热频道的Dueck 0-error 能力区域最佳对称率点$(r, r) 的确切值。 我们证明平均0-eror 能力$r= h(1/2-\delta)\ approx 0.78974$, 其中$h(\cdot) 是二进制酶函数 和$\delta = 1/(2\log_2( 2 ⁇ sqrt3) $ 。 我们的动机是数量组测试中的一个问题。 鉴于一组测试中一套有2美元元素存在缺陷, 定量组测试问题要求通过一系列测试来识别这两个缺陷。 每次测试给出测试组所含缺陷的数量, 而先前测试的结果在设计当前测试时是已知的。 我们确定测试的最低数量为$(\log_ 2 n) / r$( r$) 或 $n\ t\\\ int$。