Few-shot learning aims to train a classifier that can generalize well when just a small number of labeled examples per class are given. We introduce a transductive maximum margin classifier for few-shot learning (FS-TMMC). The basic idea of the classical maximum margin classifier is to solve an optimal prediction function so that the training data can be correctly classified by the resulting classifer with the largest geometric margin. In few-shot learning, it is challenging to find such classifiers with good generalization ability due to the insufficiency of training data in the support set. FS-TMMC leverages the unlabeled query examples to adjust the separating hyperplane of the maximum margin classifier such that the prediction function is optimal on both the support and query sets. Furthermore, we use an efficient and effective quasi-Newton algorithm, the L-BFGS method for optimization. Experimental results on three standard few-shot learning benchmarks including miniImagenet, tieredImagenet and CUB show that our method achieves state-of-the-art performance.
翻译:少见的学习旨在训练一个分类器,当每类只提供少量贴标签的例子时,这种分类器可以很好地概括。我们为少见的学习引入了一个传输式的最大差值分类器(FS-TMMC ) 。古典最大差值分类器的基本想法是解决一个最佳预测功能,使培训数据能够由由此产生的具有最大几何差的分类器对数据进行正确分类。在短微的学习中,由于支助组的培训数据不足,找到这种具有良好概括能力的分类器具有挑战性。FS-TMM 利用未贴标签的查询示例来调整最大差值分类器的分离超大平面图,使预测功能在支持组和查询组中都是最佳的。此外,我们使用一种高效和有效的准新通算法,即L-BFGS优化法。在三个标准的少见学习基准上的实验结果显示我们的方法达到了最先进的性能。