Developing state-of-the-art classical simulators of quantum circuits is of utmost importance to test and evaluate early quantum technology and understand the true potential of full-blown error-corrected quantum computers. In the past few years, multiple theoretical and numerical advances have continuously pushed the boundary of what is classically simulable, hence the development of a plethora of tools which are often limited to a specific purpose or designed for a particular hardware (e.g. CPUs vs. GPUs). Moreover, such tools are typically developed using tailored languages and syntax, which makes it hard to compare results from, and create hybrid approaches using, different simulation techniques. To support unified and optimized use of these techniques across platforms, we developed HybridQ, a highly extensible platform designed to provide a common framework to integrate multiple state-of-the-art techniques to run on a variety of hardware. The philosophy behind its development has been driven by three main pillars: "Easy to Use", "Easy to Extend", and "Use the Best Available Technology". The powerful tools of HybridQ allow users to manipulate, develop, and extend noiseless and noisy circuits for different hardware architectures. HybridQ supports large-scale high-performance computing (HPC) simulations, automatically balancing workload among different processor nodes and enabling the use of multiple backends to maximize parallel efficiency. Everything is then glued together by a simple and expressive language that allows seamless switching from one technique to another as well as from one hardware to the next, without the need to write lengthy translations, thus greatly simplifying the development of new hybrid algorithms and techniques.


翻译:开发最先进的古典量子电路模拟器对于测试和评价早期量子技术并理解完全推出错误校正的量子计算机的真正潜力至关重要。在过去几年中,多位理论和数字进步不断推高了古典模拟技术的界限,因此开发了大量工具,这些工具往往局限于特定目的或为特定硬件设计(如CPUs vs. GPUs)。此外,这类工具通常使用量身定制的语言和语法来开发,这使得难以比较结果,并使用不同的模拟技术来创建混合方法。为了支持在平台上统一和优化使用这些技术,我们开发了混合和数字技术,这是一个高度可扩展的平台,目的是提供一个共同框架,将多种状态技术整合到多种硬件上。 其开发背后的理念由三个主要支柱驱动:“容易使用”、“容易扩展”和“使用最佳可用语言”以及“最佳可得技术” 。 强大的混合工具使得一个用户能够通过不易操作、开发、发展、并因此推广的硬性、不易变现的硬件和电路路,从而将一个快速的硬化的机能和高超额的硬化的机能用于不同版本。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
2+阅读 · 2022年1月13日
Arxiv
136+阅读 · 2018年10月8日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员