As robots perform manipulation tasks and interact with objects, it is probable that they accidentally drop objects that subsequently bounce out of their visual fields (e.g., due to an inadequate grasp of an unfamiliar object). To enable robots to recover from such errors, we draw upon the concept of object permanence-objects remain in existence even when they are not being sensed (e.g., seen) directly. In particular, we developed a multimodal neural network model-using a partial, observed bounce trajectory and the audio resulting from drop impact as its inputs-to predict the full bounce trajectory and the end location of a dropped object. We empirically show that: (1) our multimodal method predicted end locations close in proximity (i.e., within the visual field of the robot's wrist camera) to the actual locations and (2) the robot was able to retrieve dropped objects by applying minimal vision-based pick-up adjustments. Additionally, we show that our method outperformed five comparison baselines in retrieving dropped objects.


翻译:作为机器人执行操纵任务并与物体互动,它们很可能不小心地将随后弹出其视觉外野的物体(例如,由于对不熟悉的物体的掌握不足)抛出(例如,由于对不熟悉的物体的掌握不足)。为了使机器人能够从这些错误中恢复过来,我们借鉴物体永久性物体的概念,即使它们没有被直接感应(例如,看到),我们仍然存在。特别是,我们开发了一个多式神经网络模型,使用部分、观测到的弹跳动轨迹和弹出弹着弹着弹着弹的音频,以预测其输入的全弹弹弹道和被击落物体的结束位置。我们的经验显示:(1) 我们的多式联运方法预测了接近实际位置(即,在机器人手腕照相机的视觉场内)的结束位置,以及(2) 机器人能够通过使用最低限度的视像基取款调整来检索被丢弃的物体。此外,我们显示我们的方法在检索被丢弃物体时超过了五个比较基线。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月8日
Arxiv
7+阅读 · 2017年12月28日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员