Existing semantic communication schemes primarily focus on single-hop scenarios, overlooking the challenges of multi-hop wireless image transmission. As semantic communication is inherently lossy, distortion accumulates over multiple hops, leading to significant performance degradation. To address this, we propose the multi-hop parallel image semantic communication (MHPSC) framework, which introduces a parallel residual compensation link at each hop against distortion accumulation. To minimize the associated transmission bandwidth overhead, a coarse-to-fine residual compression scheme is designed. A deep learning-based residual compressor first condenses the residuals, followed by the adaptive arithmetic coding (AAC) for further compression. A residual distribution estimation module predicts the prior distribution for the AAC to achieve fine compression performances. This approach ensures robust multi-hop image transmission with only a minor increase in transmission bandwidth. Experimental results confirm that MHPSC outperforms both existing semantic communication and traditional separated coding schemes.
 翻译:暂无翻译