Spelling error correction is one of topics which have a long history in natural language processing. Although previous studies have achieved remarkable results, challenges still exist. In the Vietnamese language, a state-of-the-art method for the task infers a syllable's context from its adjacent syllables. The method's accuracy can be unsatisfactory, however, because the model may lose the context if two (or more) spelling mistakes stand near each other. In this paper, we propose a novel method to correct Vietnamese spelling errors. We tackle the problems of mistyped errors and misspelled errors by using a deep learning model. The embedding layer, in particular, is powered by the byte pair encoding technique. The sequence to sequence model based on the Transformer architecture makes our approach different from the previous works on the same problem. In the experiment, we train the model with a large synthetic dataset, which is randomly introduced spelling errors. We test the performance of the proposed method using a realistic dataset. This dataset contains 11,202 human-made misspellings in 9,341 different Vietnamese sentences. The experimental results show that our method achieves encouraging performance with 86.8% errors detected and 81.5% errors corrected, which improves the state-of-the-art approach 5.6% and 2.2%, respectively.


翻译:拼写错误校正是具有悠久自然语言处理历史的课题之一。 虽然先前的研究已经取得了显著的成果, 但挑战仍然存在。 在越南语言中, 任务推算最先进的方法从相邻的音节中推断出一个音频。 但是, 方法的准确性可能不令人满意, 因为如果两个( 或更多) 拼写错误相近, 模型可能会丢失上下文。 在本文中, 我们建议一种新颖的方法来纠正越南拼写错误。 我们用深层学习模型来解决错误类型错误和错译错误的问题。 嵌入层, 特别是, 由对比对编码技术驱动。 以变换结构为基础的排序模型的顺序使我们的方法与以前关于同一问题的工作不同。 在实验中, 我们用一个大合成数据集来培训模型, 随机引入拼写错误。 我们用一个现实的数据集来测试拟议方法的性能。 这个数据集包含11, 202个人为错译错误在9, 341个越南不同句中。 嵌嵌入层层, 特别是由字对配对编码的编码技术。 。 基于变换的顺序的顺序, 顺序的顺序使我们的方法提高了8.5, 0.2 方法改进了8.8 和8.8 和8.8 % 。 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【ACL2020-Allen AI】预训练语言模型中的无监督域聚类
专知会员服务
24+阅读 · 2020年4月7日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
6+阅读 · 2020年4月14日
Arxiv
5+阅读 · 2020年3月16日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
5+阅读 · 2018年1月18日
VIP会员
相关VIP内容
【ACL2020-Allen AI】预训练语言模型中的无监督域聚类
专知会员服务
24+阅读 · 2020年4月7日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
Top
微信扫码咨询专知VIP会员