Whether or not the Kronecker coefficients of the symmetric group count some set of combinatorial objects is a longstanding open question. In this work we show that a given Kronecker coefficient is proportional to the rank of a projector that can be measured efficiently using a quantum computer. In other words a Kronecker coefficient counts the dimension of the vector space spanned by the accepting witnesses of a QMA verifier, where QMA is the quantum analogue of NP. This implies that approximating the Kronecker coefficients to within a given relative error is not harder than a certain natural class of quantum approximate counting problems that captures the complexity of estimating thermal properties of quantum many-body systems. A second consequence is that deciding positivity of Kronecker coefficients is contained in QMA, complementing a recent NP-hardness result of Ikenmeyer, Mulmuley and Walter. We obtain similar results for the related problem of approximating row sums of the character table of the symmetric group. Finally, we discuss an efficient quantum algorithm that approximates normalized Kronecker coefficients to inverse-polynomial additive error.
翻译:对称组数数组数数某些组合对象的克朗克尔系数是否是一个长期未决问题。 在这项工作中, 我们显示给定的克朗克尔系数与能够使用量子计算机有效测量的投影器的级别成比例。 换句话说, Kronecker 系数计算矢量空间的维度, 由QMA 验证器的接受证人来计算, QMA 是 NP 的量类比。 这意味着将Kronecker 系数与某个相对错误相近, 并不比某种自然的量类近计问题更难。 后者能捕捉到量子多体系统热性估计的复杂性。 第二个结果是, Kronecker 系数的假设性包含在 QMA 中, 补充了最近Ikenmeyer、 Mulmulley 和 Walter 的 NP- 硬性结果。 我们从相近的相近的匹配结果, 问题就是对称称组的字符表的相近等值行和数。 最后, 我们讨论一个高效的量量衡算法, 能将Kronecker系数的常态值系数与正正反偏差。