This paper introduces a Factor Augmented Sparse Throughput (FAST) model that utilizes both latent factors and sparse idiosyncratic components for nonparametric regression. The FAST model bridges factor models on one end and sparse nonparametric models on the other end. It encompasses structured nonparametric models such as factor augmented additive models and sparse low-dimensional nonparametric interaction models and covers the cases where the covariates do not admit factor structures. Via diversified projections as estimation of latent factor space, we employ truncated deep ReLU networks to nonparametric factor regression without regularization and to a more general FAST model using nonconvex regularization, resulting in factor augmented regression using neural network (FAR-NN) and FAST-NN estimators respectively. We show that FAR-NN and FAST-NN estimators adapt to the unknown low-dimensional structure using hierarchical composition models in nonasymptotic minimax rates. We also study statistical learning for the factor augmented sparse additive model using a more specific neural network architecture. Our results are applicable to the weak dependent cases without factor structures. In proving the main technical result for FAST-NN, we establish a new deep ReLU network approximation result that contributes to the foundation of neural network theory. Our theory and methods are further supported by simulation studies and an application to macroeconomic data.


翻译:本文介绍了一个因子增强的偏差分解模型(FAST),该模型利用潜在因素和稀疏的特异性分解元件来进行非参数回归。FAST 模型桥介因模型模型在一端,而在另一端则少见的非参数模型,它包含结构化的非参数模型,如因子增强添加添加模型和稀释的低维非参数互动模型,并涵盖共变体不接受系数结构的情况。通过对潜在要素空间的估计,我们利用深度的深ReLU网络进行多样化的预测,在不正规化的情况下将非参数回归作为非参数的深线性要素网络,并使用使用非康韦克斯正规化的更一般的FAST模型,导致使用神经网络网络(FAR-NN)和FAST-NNN(FAST-NNN)的精度模型放大回归系数模型。我们显示,FAR-NN和FAST-N(FAST-NNN)的测算算模型模型将适应未知的低度结构。我们用一个支持的宏观经济模型模型基础,为新的宏观经济模型基础。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Graph representation learning for street networks
Arxiv
0+阅读 · 2022年11月9日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员