We develop a nonparametric Bayesian modeling approach to ordinal regression based on priors placed directly on the discrete distribution of the ordinal responses. The prior probability models are built from a structured mixture of multinomial distributions. We leverage a continuation-ratio logits representation to formulate the mixture kernel, with mixture weights defined through the logit stick-breaking process that incorporates the covariates through a linear function. The implied regression functions for the response probabilities can be expressed as weighted sums of parametric regression functions, with covariate-dependent weights. Thus, the modeling approach achieves flexible ordinal regression relationships, avoiding linearity or additivity assumptions in the covariate effects. A key model feature is that the parameters for both the mixture kernel and the mixture weights can be associated with a continuation-ratio logits regression structure. Hence, an efficient and relatively easy to implement posterior simulation method can be designed, using P\'olya-Gamma data augmentation. Moreover, the model is built from a conditional independence structure for category-specific parameters, which results in additional computational efficiency gains through partial parallel sampling. In addition to the general mixture structure, we study simplified model versions that incorporate covariate dependence only in the mixture kernel parameters or only in the mixture weights. For all proposed models, we discuss approaches to prior specification and develop Markov chain Monte Carlo methods for posterior simulation. The methodology is illustrated with several synthetic and real data examples.


翻译:我们开发了一种非参数性贝叶斯回归模型方法, 其基础是直接放在离散的星系响应的分布上的前置值。 先前的概率模型是用一个结构化的多数值分布组合制成的。 我们利用一个连续的鼠标日志表达式来构建混合物内核, 其混合权重可以通过一个线性函数结合共变体。 反应的隐含回归概率功能可以表现为参数性回归函数的加权数, 并具有共变的加权。 因此, 模型方法可以实现灵活或异性回归关系, 避免共变效应中的线性或相加性假设。 一个关键模型特征是, 混合物内核和混合物内核的参数可以与连续- 鼠标日志回归结构的回归结构联系起来。 因此, 可以用P\ olya- Gamma 数据放大法来设计一个高效和相对容易执行的后置模拟方法。 此外, 模型是从特定类别参数的有条件独立结构结构中构建的, 避免在共变式效应效应效应中出现线性或相偏差性假设性假设性假设, 。 仅通过平行的混合物前的模型, 我们只能通过平行的模型来进行计算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
17+阅读 · 2021年9月17日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月29日
Arxiv
0+阅读 · 2022年12月29日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员