This article presents an experiment in fine-tuning a pretrained causal language model (Meta's Llama 3.1 8B Instruct) to assist with restoring missing or illegible characters in ancient Greek inscriptions and documentary papyri. Utilizing a straightforward instruction-based approach and a 95%/5% train/test split, the papyrus restoration model achieved a character error rate (CER) of 14.9%, a top-1 accuracy of 73.5%, and a top-20 accuracy of 86.0% for sequences up to 10 characters. A model was also fine-tuned for geographic attribution, reaching a top-1 accuracy of 66.4% and a top-3 accuracy of 79.9%. In chronological attribution, it demonstrated an average deviation of 21.7 years from the actual terminus post/ante quem, with a median deviation of 0 years. For inscriptions, the restoration model achieved a CER of 20.5%, a top-1 accuracy of 63.7%, and a top-20 accuracy of 83.0% for sequences up to 10 characters. In geographic attribution, it attained a top-1 accuracy of 75.0% and a top-3 accuracy of 83.7%, while in dating, it had an average deviation of 37.1 years and a median deviation of 3 years from the actual date range. Benchmarked against the state-of-the-art model (Ithaca) on a shared test set and on recently edited inscriptions, the instruction-tuned models excelled in text restoration, while also offering the practical advantage of ignoring spaces during reconstruction, which aligns with the scriptio continua of ancient textual artifacts. However, their performance in geographic and chronological attribution was lower than Ithaca's. To evaluate the approach in a more even setup, the instruction model was retrained with an 80%/10%/10% train-validation-test split, and still outperformed Ithaca in text restoration. The results suggest that fine-tuning larger pretrained causal language models using instruction templates for emendations and conjectures to ancient texts holds promise.
翻译:暂无翻译