Multifidelity forward uncertainty quantification (UQ) problems often involve multiple quantities of interest and heterogeneous models (e.g., different grids, equations, dimensions, physics, surrogate and reduced-order models). While computational efficiency is key in this context, multi-output strategies in multilevel/multifidelity methods are either sub-optimal or non-existent. In this paper we extend multilevel best linear unbiased estimators (MLBLUE) to multi-output forward UQ problems and we present new semidefinite programming formulations for their optimal setup. Not only do these formulations yield the optimal number of samples required, but also the optimal selection of low-fidelity models to use. While existing MLBLUE approaches are single-output only and require a non-trivial nonlinear optimization procedure, the new multi-output formulations can be solved reliably and efficiently. We demonstrate the efficacy of the new methods and formulations in practical UQ problems with model heterogeneity.
翻译:虽然计算效率是这方面的关键,但多层次/多纤维方法的多产出战略要么是次优化,要么不存在。在本文件中,我们将多层次最佳线性无偏向估测器(MLBLUE)扩大到多输出前UQ问题,并为它们的最佳设置提出新的半确定性编程配方。这些配方不仅产生所需样本的最佳数量,而且最佳选择要使用的低纤维模型。虽然现有的MLBLUE方法仅是单产出,需要非三边非线性优化程序,但新的多产出配方可以可靠和高效地解决。我们展示了新方法和配方在与模型异质性相关的实际 UQ问题中的有效性。