The current fuel moisture content (FMC) subsystems in WRF-SFIRE and its workflow system WRFx use a time-lag differential equation model with assimilation of data from FMC sensors on Remote Automated Weather Stations (RAWS) by the extended augmented Kalman filter. But the quality of the result is constrained by the limitations of the model and of the Kalman filter. We observe that the data flow in a system consisting of a model and the Kalman filter can be interpreted to be the same as the data flow in a recurrent neural network (RNN). Thus, instead of building more sophisticated models and data assimilation methods, we want to train a RNN to approximate the dynamics of the response of the FMC sensor to a time series of environmental data. Because standard AI approaches did not converge to reasonable solutions, we pre-train the RNN with special initial weights devised to turn it into a numerical solver of the differential equation. We then allow the AI training machinery to optimize the RNN weights to fit the data better. We illustrate the method on an example of a time series of 10h-FMC from RAWS and weather data from the Real-Time Mesoscale Analysis (RTMA).
翻译:在WRF-SFIRE及其工作流程系统中,WRFx目前的燃料湿度含量(FMC)子系统使用时间拉差差异方程式,将FMC传感器在远程自动气象站(RAWS)上的数据通过扩大的Kalman过滤器进行吸收,但结果的质量受到模型和Kalman过滤器的局限性的限制。我们认为,由模型和Kalman过滤器组成的系统中的数据流动可被解释为与经常性神经网络(RNN)中的数据流动相同。因此,我们不是要建立更先进的模型和数据同化方法,而是要培训一个RNN,以近似FMC传感器对一系列时间环境数据的反应的动态。由于标准的AI方法没有与合理的解决办法趋同,我们预先将RNNN(RN)系统设计为特殊的初步重量,以将其变成差异方程式的数字解算器。然后,我们允许AI培训机制优化RNN的重量以更好地适应数据。我们用一个10-FMC传感器和实时气象分析(RAWS-MAMA)中10-MASA数据的时间序列的例子来说明方法。