Let $V$ be the set of real common solutions to $F = (f_1, \ldots, f_s)$ in $\mathbb{R}[x_1, \ldots, x_n]$ and $D$ be the maximum total degree of the $f_i$'s. We design an algorithm which on input $F$ computes the dimension of $V$. Letting $L$ be the evaluation complexity of $F$ and $s=1$, it runs using $O^\sim \big (L D^{n(d+3)+1}\big )$ arithmetic operations in $\mathbb{Q}$ and at most $D^{n(d+1)}$ isolations of real roots of polynomials of degree at most $D^n$. Our algorithm depends on the real geometry of $V$; its practical behavior is more governed by the number of topology changes in the fibers of some well-chosen maps. Hence, the above worst-case bounds are rarely reached in practice, the factor $D^{nd}$ being in general much lower on practical examples. We report on an implementation showing its ability to solve problems which were out of reach of the state-of-the-art implementations.


翻译:让美元成为美元= (f_1,\ldots, f_s) 的一套真正的共同解决方案。 美元= (f_1,\ldots, f_s) 美元= 美元= mathbb{R} [x_1,\ldots, x_n] $] 美元, 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= (f_ 1,\ ldots, f_) 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= = 美元= 美元= [x_ 1, x_ 1, 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= = 美元= 美元= 美元= = 美元= 美元= = 美元= 美元= 美元= 美元= 美元= 美元= 美元= = = 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元=

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
9+阅读 · 2017年10月17日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
On the Explanatory Power of Decision Trees
Arxiv
0+阅读 · 2021年8月11日
Arxiv
1+阅读 · 2021年8月11日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
9+阅读 · 2017年10月17日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员