Many fundamental questions in theoretical computer science are naturally expressed as special cases of the following problem: Let $G$ be a complex reductive group, let $V$ be a $G$-module, and let $v,w$ be elements of $V$. Determine if $w$ is in the $G$-orbit closure of $v$. I explain the computer science problems, the questions in representation theory and algebraic geometry that they give rise to, and the new perspectives on old areas such as invariant theory that have arisen in light of these questions. I focus primarily on the complexity of matrix multiplication.
翻译:理论计算机科学的许多基本问题自然被表述为下列问题的特殊例子:让G$成为一个复杂的裁减集团,让V$成为一个G$模块,让V$成为美元元的元件。确定美元是否在G$-轨道关闭的V美元中。我解释计算机科学问题、它们引起的代表理论和代数几何学问题,以及对旧领域的新看法,例如根据这些问题产生的无差别理论,我主要侧重于矩阵乘法的复杂性。