In this paper, we discuss methods to assess the interestingness of a query in an environment of data cubes. We assume a hierarchical multidimensional database, storing data cubes and level hierarchies. We provide a systematic taxonomy of the dimensions of interestingness, and specifically, relevance, surprise, novelty, and peculiarity. We propose specific measures and algorithms for assessing the different dimensions of cube query interestingness in a quantitative fashion.
翻译:在本文中,我们讨论在数据立方体环境中评估查询的有趣性的方法。我们假设一个等级多维数据库,存储数据立方体和等级等级。我们提供一个系统分类系统,说明有趣的层面,特别是相关性、出乎意料性、新奇性和特殊性。我们提出了具体措施和算法,以量化的方式评估立方体查询不同层面的有趣性。